The Effect of Signal Activity on Propagation Delay of CMOS Logic Gates Driving Coupled On-Chip Interconnections

نویسندگان

  • KEVIN T. TANG
  • EBY G. FRIEDMAN
چکیده

The effect of interconnect coupling capacitances on neighboring CMOS logic gates driving coupled interconnections strongly depends upon signal activity. A transient analysis of two capacitively coupled CMOS logic gates is presented in this paper for different combinations of signal activity. The uncertainty of the effective load capacitance and propagation delay due to signal activity is addressed. Analytical expressions characterizing the output voltage and propagation delay are also presented for different signal activity conditions. The propagation delay based on these analytical expressions is within 3% as compared to SPICE, while the estimated delay neglecting the difference between the load capacitances can exceed 45%. The logic gates should be properly sized to balance the load capacitances in order to minimize any uncertainty in the delay and load. The peak noise voltage on a quiet interconnection determined from the analytical expressions is within 4% of SPICE. The peak noise voltage on a quiet interconnection can be minimized if the effective output conductance of the quiet logic gate driving the interconnect is increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay and noise estimation of CMOS logic gates driving coupled resistive-capacitive interconnections

The e!ect of interconnect coupling capacitance on the transient characteristics of a CMOS logic gate strongly depends upon the signal activity. A transient analysis of CMOS logic gates driving two and three coupled resistive}capacitive interconnect lines is presented in this paper for di!erent signal combinations. Analytical expressions characterizing the output voltage and the propagation dela...

متن کامل

Power Consumption Estimation in CMOS VLSI Chips

Power consumption from logic circuits, interconnections, dock distribution, on chip memories, and off chip driving in CMOS VLSI is estimated. Estimation methods are demonstrated and verified. An estimate tool is created. Power consumption distribution between ~ I I ~ I T O M ~ C ~ ~ O I W , clock distribution, logic gates, memories, and off chip driving are analyzed by examples. Comparisons are...

متن کامل

Device and Circuit Performance Simulation of a New Nano- Scaled Side Contacted Field Effect Diode Structure

A new side-contacted field effect diode (S-FED) structure has beenintroduced as a modified S-FED, which is composed of a diode and planar double gateMOSFET. In this paper, drain current of modified and conventional S-FEDs wereinvestigated in on-state and off-state. For the conventional S-FED, the potential barrierheight between the source and the channel is observed to b...

متن کامل

Delay Uncertainty Due to On-chip Simultaneous Switching Noise in High Performance Cmos Integrated Circuits

On-chip parasitic inductance inherent to the power supply rails has become significant in high speed digital circuits. Therefore, current surges result in voltage fluctuations within the power distribution networks, creating delay uncertainty. On-chip simultaneous switching noise should therefore be considered when estimating the propagation delay of a CMOS logic gate in high speed synchronous ...

متن کامل

A Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates

The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002